Part Number Hot Search : 
AT88SC X8566L TSA5059A SRD820 2SC2839 R43391 0DC24 S4008DS2
Product Description
Full Text Search
 

To Download OP29706 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Dual Low Bias Current Precision Operational Amplifier OP297
FEATURES
Low offset voltage: 50 V maximum Low offset voltage drift: 0.6 V/C maximum Very low bias current: 100 pA maximum Very high open-loop gain: 2000 V/mV minimum Low supply current (per amplifier): 625 A maximum Operates from 2 V to 20 V supplies High common-mode rejection: 120 dB minimum
60
PIN CONFIGURATION
OUTA 1 -INA 2 +INA 3 V- 4 A B
8 7 6 5
V+ OUTB
00300-001
-INB +INB
Figure 1.
VS = 15V VCM = 0V 40
INPUT CURRENT (pA)
APPLICATIONS
Strain gage and bridge amplifiers High stability thermocouple amplifiers Instrumentation amplifiers Photocurrent monitors High gain linearity amplifiers Long-term integrators/filters Sample-and-hold amplifiers Peak detectors Logarithmic amplifiers Battery-powered systems
20 IB- 0 IB+ -20 IOS -40
-50
-25
GENERAL DESCRIPTION
The OP297 is the first dual op amp to pack precision performance into the space saving, industry-standard 8-lead SOIC package. The combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications. Precision performance of the OP297 includes very low offset, under 50 V, and low drift, below 0.6 V/C. Open-loop gain exceeds 2000 V/mV, ensuring high linearity in every application. Errors due to common-mode signals are eliminated by the common-mode rejection of over 120 dB, which minimizes offset voltage changes experienced in battery-powered systems. The supply current of the OP297 is under 625 A. The OP297 uses a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25C, but double for every 10C rise in temperature, to reach the nanoamp range above 85C. Input bias current of the OP297 is under 100 pA at 25C and is under 450 pA over the military temperature range per amplifier. This part can operate with supply voltages as low as 2 V.
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
400
0 25 50 TEMPERATURE (C)
75
100
125
Figure 2. Low Bias Current over Temperature
1200 UNITS
TA = 25C VS = 15V VCM = 0V
300
NUMBER OF UNITS
200
100
-60
-40
-20
0
20
40
60
80
100
INPUT OFFSET VOLTAGE (V)
Figure 3. Very Low Offset
Combining precision, low power, and low bias current, the OP297 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photodiode preamplifiers, and long term integrators. For a single device, see the OP97; for a quad device, see the OP497.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2006 Analog Devices, Inc. All rights reserved.
00300-003
0 -100 -80
00300-002
-60 -75
OP297 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Pin Configuration............................................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Absolute Maximum Ratings............................................................ 4 Thermal Resistance ...................................................................... 4 ESD Caution.................................................................................. 4 Typical Performance Characteristics ............................................. 5 Applications Information ................................................................ 9 AC Performance ............................................................................9 Guarding and Shielding................................................................9 Open-Loop Gain Linearity ....................................................... 10 Applications..................................................................................... 11 Precision Absolute Value Amplifier......................................... 11 Precision Current Pump............................................................ 11 Precision Positive Peak Detector.............................................. 11 Simple Bridge Conditioning Amplifier ................................... 11 Nonlinear Circuits...................................................................... 12 Outline Dimensions ....................................................................... 13 Ordering Guide .......................................................................... 14
REVISION HISTORY
2/06--Rev. E to Rev. F Updated Format..................................................................Universal Changes to Features.......................................................................... 1 Deleted OP297 Spice Macro Model Section ................................. 9 Updated Outline Dimensions ....................................................... 13 Changes to Ordering Guide .......................................................... 14 7/03--Rev. D to Rev. E Changes to TPCs 13 and 16 ............................................................ 4 Edits to Figures 12 and 14 ............................................................... 8 Changes to Nonlinear Circuits Section ......................................... 8 10/02--Rev. C to Rev. D Edits to Figure 16...............................................................................6 10/02--Rev. B to Rev. C Edits to Specifications .......................................................................2 Deleted Wafer Test Limits ................................................................3 Deleted Dice Characteristics............................................................3 Deleted Absolute Maximum Ratings..............................................4 Edits to Ordering Guide ...................................................................4 Updated Outline Dimensions....................................................... 12
Rev. F | Page 2 of 16
OP297 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = 15 V, TA = 25C, unless otherwise noted. Table 1.
OP297E Parameter Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Input Resistance Differential Mode Input Resistance Common-Mode Large Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection Power Supply Rejection Output Voltage Swing Supply Current per Amplifier Supply Voltage Slew Rate Gain Bandwidth Product Channel Separation Input Capacitance
1
OP297F Max 50 Min Typ 50 0.1 35 35 0.5 20 17 20 30 500 1500 13 114 114 13 13 625 20 2 0.05 3200 14 135 125 14 13.7 525 0.15 500 150 3 1200 13 114 114 13 13 625 20 2 0.05 Max 100 Min
OP297G Typ 80 0.1 50 50 0.5 20 17 20 30 500 3200 14 135 125 14 13.7 525 0.15 500 150 3 Max 200 Unit V V/mo pA pA V p-p nV/Hz nV/Hz fA/Hz M G V/mV V dB dB V V A V V/s kHz dB pF
Symbol VOS
Conditions
Min
Typ 25 0.1 20 20 0.5 20 17 20 30 500
IOS IB en p-p en in RIN RINCM AVO VCM CMRR PSRR VO ISY VS SR GBWP CS CIN
VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz fO = 10 Hz fO = 1000 Hz fO = 10 Hz
100 100
150 150
200 200
VO = 10 V RL = 2 k VCM = 13 V VS = 2 V to 20 V RL = 10 k RL = 2 k No Load Operating Range AV = +1 VO = 20 V p-p fO = 10 Hz
2000 13 120 120 13 13 2 0.05
4000 14 140 130 14 13.7 525 0.15 500 150 3
625 20
Guaranteed by CMR test.
@ VS = 5 V, -40C TA +85C for OP297E/OP297F/OP297G, unless otherwise noted. Table 2.
OP297E Parameter Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection Power Supply Rejection Output Voltage Swing Supply Current per Amplifier Supply Voltage
1
OP297F Max 100 0.6 450 450 1000 13 108 108 13 750 20 2.5 Min Typ 80 0.5 80 80 2500 13.5 130 0.15 13.4 550 750 20 Max 300 2.0 750 750 800 13 108 108 13 2.5 Min
OP297G Typ 110 0.6 80 80 2500 13.5 130 0.3 13.4 550 750 20 Max 400 2.0 750 750 Unit V V/C pA pA V/mV V dB dB V A V
Symbol VOS TCVOS IOS IB AVO VCM CMRR PSRR VO ISY VS
Conditions
Min
Typ 35 0.2 50 50
VCM = 0 V VCM = 0 V VO = 10 V RL = 2 k VCM = 13 VS = 2.5 V to 20 V RL = 10 k No Load Operating Range
1200 13 114 114 13 2.5
3200 13.5 130 0.15 13.4 550
Guaranteed by CMR test. Rev. F | Page 3 of 16
OP297 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Supply Voltage Input Voltage1 Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range Z Package P, S Packages Operating Temperature Range OP297E (Z) OP297F, OP297G (P, S) Junction Temperature Z Package P, S Packages Lead Temperature (Soldering, 60 sec)
1
Rating 20 V 20 V 40 V Indefinite -65C to +175C -65C to +150C -40C to +85C -40C to +85C -65C to +175C -65C to +150C 300C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL RESISTANCE
JA is specified for worst-case mounting conditions, that is, JA is specified for device in socket for CERDIP and PDIP packages; JA is specified for device soldered to printed circuit board for the SOIC package. Table 4. Thermal Resistance
Package Type 8-Lead CERDIP (Z-Suffix) 8-Lead PDIP (P-Suffix) 8-Lead SOIC (S-Suffix) JA 134 96 150 JC 12 37 41 Unit C/W C/W C/W
For supply voltages less than 20 V, the absolute maximum input voltage is equal to the supply voltage.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
1/2 OP297
+
50k 50
-
V1 20V p-p @ 10Hz 2k
1/2 OP297
+
-
V2
CHANNEL SEPARATION = 20 log
V1 V2/10000
Figure 4. Channel Separation Test Circuit
Rev. F | Page 4 of 16
00300-004
OP297 TYPICAL PERFORMANCE CHARACTERISTICS
400
60
1200 UNITS
TA = 25C VS = 15V VCM = 0V
INPUT CURRENT (pA)
VS = 15V VCM = 0V 40
300
NUMBER OF UNITS
20 IB- 0 IB+ -20 IOS -40
200
100
-80
-60
-40 -20 0 20 40 INPUT OFFSET VOLTAGE (pA)
60
80
100
00300-005
-50
-25
0 25 50 TEMPERATURE (C)
75
100
125
Figure 5. Typical Distribution of Input Offset Voltage
250
1200 UNITS
Figure 8. Input Bias, Offset Current vs. Temperature
60 VS = 15V VCM = 0V 40
INPUT CURRENT (pA)
200
TA = 25C VS = 15V VCM = 0V
NUMBER OF UNITS
IB- 20 IB+
150
100
0 IOS
50
-20
00300-006
-80
-60
-40 -20 0 20 40 INPUT OFFSET VOLTAGE (pA)
60
80
100
-10
-5 0 5 COMMON-MODE VOLTAGE (V)
10
15
Figure 6. Typical Distribution of Input Bias Current
400 1200 UNITS TA = 25C VS = 15V VCM = 0V
Figure 9. Input Bias, Offset Current vs. Common-Mode Voltage
3
DEVIATION FROM FINAL VALUE (V)
TA = 25C VS = 15V VCM = 0V
300
NUMBER OF UNITS
2
200
1
100
00300-007
-80
-60
-40 -20 0 20 40 INPUT OFFSET VOLTAGE (pA)
60
80
100
0
1 2 3 4 TIME AFTER POWER APPLIED (Minutes)
5
Figure 7. Typical Distribution of Input Offset Current
Figure 10. Input Offset Voltage Warm-Up Drift
Rev. F | Page 5 of 16
00300-010
0 -100
0
00300-009
0 -100
-40 -15
00300-008
0 -100
-60 -75
OP297
10000 BALANCED OR UNBALANCED VS = 15V VCM = 0V
1300 NO LOAD
EFFECTIVE OFFSET VOLTAGE (V)
TOTAL SUPPLY CURRENT (A)
1200
TA = +125C
1000
1100
TA = +25C
1000
100 -55C TA +125C
TA = -55C
900
00300-011
10
100
1k
10k
100k
1M
10M
0
5
SOURCE RESISTANCE ()
10 SUPPLY VOLTAGE (V)
15
20
Figure 11. Effective Offset Voltage vs. Source Resistance
100
EFFECTIVE OFFSET VOLTAGE DRIFT (V/C)
Figure 14. Total Supply Current vs. Supply Voltage
160 TA = 25C VS = 15V
10
COMMON-MODE REJECTION (dB)
BALANCED OR UNBALANCED VS = 15V VCM = 0V
140
120
100
1
80
60
1k
10k
100k
1M
10M
100M
00300-012
1
10
SOURCE RESISTANCE ()
100 1k 10k FREQUENCY (Hz)
100k
1M
Figure 12. Effective TCVOS vs. Source Resistance
35 30 25 TA = -55C TA = +25C TA = +125C VS = 15V OUTPUT SHORTED TO GROUND
Figure 15. Common-Mode Rejection Frequency
160 TA = 25C VS = 15V VS = 10V p-p
20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 0
POWER SUPPLY REJECTION (dB)
SHORT-CIRCUIT CURRENT (mA)
140
120
100
TA = +125C TA = +25C TA = -55C
00300-013
80
60
1 2 3 TIME FROM OUTPUT SHORT (Minutes)
4
1
10
100 1k FREQUENCY (Hz)
10k
100k
1M
Figure 13. Short-Circuit Current vs. Time, Temperature
Figure 16. Power Supply Rejection vs. Frequency
Rev. F | Page 6 of 16
00300-016
40 0.1
00300-015
0.1 100
40
00300-014
10
TA = +25C
800
OP297
1000 TA = 25C VS = 2V TO 15V 1000
DIFFERENTIAL INPUT VOLTAGE (10V/DIV)
VOLTAGE NOISE DENSITY (nV/Hz)
CURRENT NOISE DENSITY (fA/Hz)
RL = 10k VS = 15V VCM = 0V TA = +125C
100 CURRENT NOISE
100
TA = +25C
0
10
VOLTAGE NOISE
10
TA = -55C
00300-017
1
10
100 FREQUENCY (Hz)
-15
-10
-5
0
5
10
15
OUTPUT VOLTAGE (V)
Figure 17. Voltage Noise Density and Current Noise Density vs. Frequency
10 TA = 25C VS = 2V TO 20V
Figure 20. Differential Input Voltage vs. Output Voltage
35 30
OUTPUT SWING (V p-p)
TOTAL NOISE DENSITY (nV/Hz)
1 10Hz
25 20 15 10 5
TA = 25C VS = 15V AVCL = +1 1% THD fO = 1kHz
1kHz 0.1
1kHz 10Hz
00300-018
103
104 105 SOURCE RESISTANCE ()
106
107
100 1k LOAD RESISTANCE ()
10k
Figure 18. Total Noise Density vs. Source Resistance
10000
TA = -55C TA = +25C
Figure 21. Output Swing vs. Load Resistance
35
TA = 25C VS = 15V AVCL = +1 1% THD fO = 1kHz RL = 10k
VS = 15V VO = 10V
30
OUTPUT SWING (V p-p)
OPEN-LOOP GAIN (V/mV)
25 20 15 10 5
TA = +125C
1000
100 1
00300-019
2
5 6 7 8 9 10 3 4 LOAD RESISTANCE (k)
20
1k
10k FREQUENCY (Hz)
100k
Figure 19. Open-Loop Gain vs. Load Resistance
Figure 22. Maximum Output Swing vs. Frequency
Rev. F | Page 7 of 16
00300-022
0 100
00300-021
0.01 102
0 10
00300-020
1
1 1000
OP297
100 80 GAIN
OPEN-LOOP GAIN (dB)
1000
VS = 15V CL = 30pF RL = 1M
OUTPUT IMPEDANCE ()
PHASE SHIFT (Deg)
100
TA = 25C VS = 15V
60 40 20 0 PHASE TA = -55C
10
1
0.1
-20 TA = +125C
00300-023
0.01
1k
10k 100k FREQUENCY (Hz)
1M
10M
100
1k 10k FREQUENCY (Hz)
100k
1M
Figure 23. Open-Loop Gain, Phase vs. Frequency
70 60 50
OVERSHOOT (%)
Figure 25. Open-Loop Output Impedance vs. Frequency
TA = 25C VS = 15V AVCL = +1 VOUT = 100mV p-p
-EDGE
40 +EDGE 30 20 10 0
0
100 1000 LOAD CAPACITANCE (pF)
10000
Figure 24. Small Signal Overshoot vs. Load Capacitance
00300-024
Rev. F | Page 8 of 16
00300-025
-40 100
0.001 10
OP297 APPLICATIONS INFORMATION
Extremely low bias current over a wide temperature range makes the OP297 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is unnecessary with the OP297. Offset voltage and TCVOS are degraded only minimally by high source resistance, even when unbalanced. The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted and can vary over the full range of the supply voltages used. The OP297 requires very little operating headroom about the supply rails and is specified for operation with supplies as low as 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 k load.
100 90
10 0%
00300-028
20mV
5s
Figure 28. Large Signal Transient Response (AVCL = 1)
UNITY-GAIN FOLLOWER NONINVERTING AMPLIFIER
AC PERFORMANCE
The ac characteristics of the OP297 are highly stable over its full operating temperature range. Unity gain small signal response is shown in Figure 26. Extremely tolerant of capacitive loading on the output, the OP297 displays excellent response with 1000 pF loads (see Figure 27).
-
1/2 OP297
-
1/2 OP297
+
+
INVERTING AMPLIFIER 8
MINI-DIP BOTTOM VIEW 1
100 90
A
-
1/2 OP297
B
+
00300-029
10 10
Figure 29. Guard Ring Layout and Considerations
0%
GUARDING AND SHIELDING
00300-026
20mV
5s
Figure 26. Small Signal Transient Response (CLOAD = 100 pF, AVCL = 1)
100 90
10 0%
00300-027
To maintain the extremely high input impedances of the OP297, care is taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces operate at a voltage close to that on the inputs, as shown in Figure 29, to minimize leakage currents. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be placed on both sides of the circuit board.
20mV
5s
Figure 27. Small Signal Transient Response (CLOAD = 1000 pF, AVCL = 1)
Rev. F | Page 9 of 16
OP297
The OP297 has both an extremely high gain of 2000 V/mV minimum and constant gain linearity. This enhances the precision of the OP297 and provides for very high accuracy in high closed-loop gain applications. Figure 30 illustrates the typical open-loop gain linearity of the OP297 over the military temperature range.
DIFFERENTIAL INPUT VOLTAGE (10V/DIV)
OPEN-LOOP GAIN LINEARITY
RL = 10k VS = 15V VCM = 0V TA = +125C
TA = +25C 0 TA = -55C
-15
-10
-5
0
5
10
15
OUTPUT VOLTAGE (V)
Figure 30. Open-Loop Linearity of the OP297
Rev. F | Page 10 of 16
00300-030
OP297 APPLICATIONS
PRECISION ABSOLUTE VALUE AMPLIFIER
The circuit in Figure 31 is a precision absolute value amplifier with an input impedance of 30 M. The high gain and low TCVOS of the OP297 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP297 exceeds 120 dB, yielding an error of less than 2 ppm.
+15V
PRECISION POSITIVE PEAK DETECTOR
In Figure 33, the CH must be of polystyrene, Teflon(R), or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the OP297.
1k
+15V 1N4148
0.1F
C2 0.1F R1 1k R3 1k
VIN
2 1k 3
1/2 OP297
+
-
1
1k CH
6
5
1/2 OP297
+
-
7
VOUT
0.1F
00300-033
2
-
8
C1 30pF
1
D1 1N4148
5
-
VIN
3
1/2 OP297
4
6
1/2 OP297
RESET
7
1k
2N930 -15V
+
0V < VOUT < 10V
+
C3 0.1F
D2 1N4148
R2 2k
00300-031
Figure 33. Precision Positive Peak Detector
SIMPLE BRIDGE CONDITIONING AMPLIFIER
Figure 34 shows a simple bridge conditioning amplifier using the OP297. The transfer function is
-15V
Figure 31. Precision Absolute Value Amplifier
PRECISION CURRENT PUMP
Maximum output current of the precision current pump shown in Figure 32 is 10 mA. Voltage compliance is 10 V with 15 V supplies. Output impedance of the current transmitter exceeds 3 M with linearity better than 16 bits.
R3 10k R1 10k VIN R2 10k
R R F VOUT = VREF R + R R
The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, RF should be 0.1% or better with a low temperature coefficient.
15V
VREF
2 3
RF
1/2 OP297
+
-
1 +15V 8
R6 10k
REF43
IOUT 10mA
2 4
R + R
3
1/2 OP297
+
-
1
VOUT
7
1/2 OP297
-
IOUT =
VIN R5
=
VIN 100
= 10mA/V
-15V
00300-032
4
Figure 32. Precision Current Pump
Figure 34. A Simple Bridge Condition Amplifier Using the OP297
Rev. F | Page 11 of 16
00300-034
+
R4 10k
5
6
6
5
1/2 OP297
+
-
8 7
VOUT = VREF
RF R R + R R
OP297
NONLINEAR CIRCUITS
Due to its low input bias currents, the OP297 is an ideal log amplifier in nonlinear circuits such as the square and square root circuits shown in Figure 35 and Figure 36. Using the squaring circuit of Figure 35 as an example, the analysis begins by writing a voltage loop equation across Transistor Q1, Transistor Q2, Transistor Q3, and Transistor Q4.
R2 33k C2 100pF
6 IO 5
1/2 OP297
+
MAT04E 13
-
7
VOUT IREF
I VT 1ln IN I S1
I + VT 2 ln IN I S2
I = VT 3ln O I S3
I + VT 4 ln REF I S4

R1 33k
Q1
1 3 7 Q2 5 8
C1 100pF
V+ 6
14 Q4 12
All the transistors of the MAT04 are precisely matched and at the same temperature, so the IS and VT terms cancel, where 2 ln IIN = ln IO + ln IREF = ln (IO x IREF) Exponentiating both sides of the equation leads to
Q3 10
9
VIN
2 3
1/2 OP297
+
4 V-
-
8 1
R3 50k R4 50k
-15V
00300-036
IO
(I )2 = IN
I REF
Figure 36. Square Root Amplifier
Op Amp A2 forms a current-to-voltage converter, which gives VOUT = R2 x IO. Substituting (VIN/R1) for IIN and the above equation for IO yields
In these circuits, IREF is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference can be used to set IREF. An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale IREF or R1; R2 can be varied to keep the output voltage within the usable range. Unadjusted accuracy of the square root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.
R2 VOUT = I REF
VIN 2 R1
A similar analysis made for the square root circuit of Figure 36 leads to its transfer function VOUT = R2
(VIN )(I REF )
R1
C2 100pF R2 33k
6
2
1 Q1 3
IO
6 7 Q2 5 8 Q3 10 1
5
1/2 OP297
+
-
7
VOUT
MAT04E
VIN
R1 33k
C1 100pF V+
2 3
9
IREF
14 13 Q4 12
1/2 OP297
+
4 V-
-
8
R3 50k R4 50k
-15V
Figure 35. Squaring Amplifier
Rev. F | Page 12 of 16
00300-035
OP297 OUTLINE DIMENSIONS
0.400 (10.16) 0.365 (9.27) 0.355 (9.02)
8 1 5
4
0.280 (7.11) 0.250 (6.35) 0.240 (6.10)
0.005 (0.13) MIN
0.055 (1.40) MAX
5
PIN 1 0.100 (2.54) BSC 0.210 (5.33) MAX 0.150 (3.81) 0.130 (3.30) 0.115 (2.92) 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) 0.060 (1.52) MAX 0.015 (0.38) MIN
0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92)
8
0.310 (7.87) 0.220 (5.59)
1 4
0.015 (0.38) GAUGE PLANE SEATING PLANE 0.430 (10.92) MAX
0.100 (2.54) BSC
0.014 (0.36) 0.010 (0.25) 0.008 (0.20)
0.405 (10.29) MAX 0.200 (5.08) MAX 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 0.070 (1.78) 0.030 (0.76) 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING PLANE 15 0
0.320 (8.13) 0.290 (7.37)
0.005 (0.13) MIN
0.015 (0.38) 0.008 (0.20)
COMPLIANT TO JEDEC STANDARDS MS-001-BA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 37. 8-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-8) Dimensions shown in inches and (millimeters)
5.00 (0.1968) 4.80 (0.1890)
8 5
Figure 38. 8-Lead Ceramic Dual In-Line Package [CERDIP] Z-Suffix (Q-8) Dimensions shown in inches and (millimeters)
4.00 (0.1574) 3.80 (0.1497) 1
6.20 (0.2440)
4 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040)
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) x 45 0.25 (0.0099)
0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE
8 0.25 (0.0098) 0 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 39. 8-Lead Standard Small Outline Package (SOIC) Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches)
Rev. F | Page 13 of 16
OP297
ORDERING GUIDE
Model OP297EZ OP297FP OP297FPZ 1 OP297FS OP297FS-REEL OP297FS-REEL7 OP297FSZ1 OP297FSZ-REEL1 OP297FSZ-REEL71 OP297GP OP297GPZ1 OP297GS OP297GS-REEL OP297GS-REEL7 OP297GSZ1 OP297GSZ-REEL1 OP297GSZ-REEL71
1
Temperature Range -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
Package Description 8-Lead CERDIP 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC 8-Lead SOIC
Package Options Q-8 N-8 N-8 R-8 R-8 R-8 R-8 R-8 R-8 N-8 N-8 R-8 R-8 R-8 R-8 R-8 R-8
Z = PB-free part.
Rev. F | Page 14 of 16
OP297 NOTES
Rev. F | Page 15 of 16
OP297 NOTES
(c)2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00300-0-2/06(F)
Rev. F | Page 16 of 16


▲Up To Search▲   

 
Price & Availability of OP29706

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X